The Value of the Acceleration of Gravity Lab

Theory: Taking a look at the acceleration of a marble rolling down a ramp, we can see that as the angle of the ramp approaches 90° the vertical component of the acceleration will approach the value of the free-fall acceleration, or the acceleration due to gravity, **g**.

a_y

g = a_y a = g

Purpose: To experimentally determine the value of the acceleration due to gravity, g.

Equipment:

- A shelving track to use as an incline
- 5 Books used as support
- Stopwatch

- A marble
- Masking tape
- Meterstick

Pamp Haights Tastad

Set Up:

O Marble Shelving track

Experimental Method:

- 1. Set up your materials as shown in the diagram above. Measure the length of the ramp.
- 2. You will start your marble at the very top of your ramp. Measure the vertical height of the marble each time you change the number of books supporting your ramp.
- 3. Measure the time it takes the marble to travel the length of the ramp 3 times for each height.

Data:

Length of Ramp:	m
-----------------	---

	1 book	2 books	3 books	4 books	5 books	
Vertical Height of Marble:	m	m	m	m	m	
Time Trials						
Time 1	S	S	S	S	S	
Time 2	S	S	S	S	S	
Time 3	S	S	S	S	S	

Analysis:

- 1. Perform the following calculations and show a sample calculation of each in your lab notebook:
 - a. The angle of the ramp for each height tested
 - b. The average time for each height tested
 - c. The average acceleration (down the ramp) for each height tested
 - d. The vertical component of your average accelerations
- 2. Draw a graph of a_y vs. sin θ . If you can, use a whole page for your graph. This will make your graph easier to read and work with.
 - a. Draw a best-fit line through your data. *Remember* A best-fit line will not necessarily go through every point on your graph. If you are unsure where to draw your best-fit line, ask Ms. Carlson.
 - b. Find the value of a_y when your best-fit line passes through the point where $\sin\theta = 1$. This will be your value for **g**. What is this value?